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Problems that arise when constructing and analysing dynamical models of linear discrete-continuous systems, which are represented 
as matrices of quasi-rational fractions, that is to say, quotients of quasi-polynomials, are investigated. Theorems on the roots of 
the characteristic quasi-polynomial and the stability of the dynamical models are formulated. As an example, the dynamical 
modelling of an elastic link of a manipulator is considered. © 2000 Elsevier Science Ltd. All rights reserved. 

1. EQUATIONS OF MOTION 

In control theory and stability analysis for systems with deformable controlled objects [1-4], mechanical 
models of such systems are represented by a combination of absolutely rigid and elastic bodies 
dynamically linked through interfaces. The equations of motion of such systems (discrete-continuous 
systems (DCS) in the terminology of [1]) comprise the system of ordinary differential equations of motion 
of the absolutely rigid bodies, the partial differential equations of the motion of the elastic bodies with 
boundary conditions, linkage conditions in the form of point boundary forces and couples on the 
absolutely rigid bodies, as well as initial conditions. 

We consider the equations of motion of a DCS in general form, expressed in dimensionless form 

Fix ( t ) ,  y( t ) ,  ~(t) ,  y( t ) ,  n ( t ) ;  E] = 0, E "~ I (1.1) 

Gw(z,t) = V(z,x, y, ~, y;l~) (1.2) 

z = 0 :  w ( 0 , t ) =  PI, w ' ( O , t ) E =  P2; z = h w ( l , t ) =  P3, w ' ( I , t ) E =  P4 (1.3) 

E=[I  .... I]r,()'=O/Oz, Pj =Pj(y;e), j = l  .... 4 

n(t) = g](w(z,t)) (1.4) 

t = 0: y(0) = Y0, ~(0) = Y0, w(z,O) = Wo(Z), 3w(z,O)lOt = fi~0(z) (1.5) 

where (1.1) are the ordinary differential equations of motion of the absolutely rigid bodies, (1.2) are 
the partial differential equations of motion of the elastic bodies, (1.3) are the boundary conditions, (1.4) 
are the linkage conditions, (1.5) are the initial conditions, x(t) denotes a kx-dimensional vector of input 
functions--point perturbations, y(t) is a kT-dimensional vector of the output functions (the parameters 
of the motion of the absolutely rigid bodies)--the reactions of the system, w(z, t) is a kw-dimensional 
vector of elastic displacements of the deformable bodies, z is a kz-dimensional vector of the space 
coordinates, G is a diagonal matrix of operators containing partial derivatives with respect to z and t, 
n(t) is a kn-dimensional vector of boundary point forces and couples at the absolutely rigid bodies (from 
the elastic bodies), g is a diagonal matrix of the linkage operators, F and V, Pj are ky-dimensional and 
kw-dimensional vector functions of the appropriate vector arguments, e is a small parameter of the 
problem, and dots denote differentiation with respect to the time t. 
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If 

3F bF bF bF 
- b---x- : B = const, ~ : C = const, ~ = K = const, ~ -  : M = const 

~F A =const, bV bV bV = V~(z), bV at'"~ = f~y = VI(Z)' "-~ = V2(Z)' ¢-)%'~' " ~ x  = V4(Z) (1.6) 

b~ bF bV aP i 
= a j = c o n s t ,  - - = - - =  • =0 ;  j = l  . . . . .  4 

by De De b~ 

then the linear equations of motion of the DCS are derived from (1.1)-(1.5) 

My+ Ky+ Cy+ an = Bx, Lw(z,t)= V~y+ V2S,+ V~j;+ V4x 

z=0 :  w(O,t)=oqy, w'(O,t)E=cxzy 

z=  I: w(l,t)=o%y, y'(I,t)E=cx4y (1.7) 

n(t) = gf(w(z,t)) 

t = 0: y(0) = Y0, f(0) = S'o, w(z,O) = wo(z), bw(z,O)/bt = i%(z) 

where L is the diagonal matrix of a linear operator. 
In what follows, as in the traditional approach [1--4], we will confine our attention to linear equations 

of motion of a DCS. 

2. D Y N A M I C A L  M O D E L  OF A L I N E A R  DCS 

Let the vector functionsx(t),y(t), n(t) and w(z, t) satisfy the conditions for the Laplace integral transform 
to exist. Setting the initial data equal to zero, we obtain from (1.7) the equations of  a linear DCS in 
terms of  the transforms (denoted by a tilde; h is an arbitrary complex parameter) 

(M~. 2 + K~. + C)~,(~.) + Ah(~) = B2(~.) (2.1) 

L~v(z, L) = (V t + V2~. + VQ~ 2)y(X) + V4,~(~,) (2.2) 

z = O: fv(O,M = a,~'(M, ~v'(O, ME = a2y:(X) 

Z = I: ~i,(I,~.) = Ot3~0~), ~'(I ,L)E = 13¢4v(~, ) (2.3) 

h(X) = gf(~'(z, X)) (2.4) 

We integrate the ordinary differential equation (2.2) with respect to z with boundary conditions (2.3). 
Assuming that an exact solution if(z, h) = if°[z, X, $(h), p(X)] can be found for Eqs (2.2) and (2.3), and 
substituting this solution into (2.4), we have 

= 

Transforming the expression for Ah(h) and substituting into (2.1), we find the transform of the out 
vector function of the dynamical system 

)(7~) = [~x(~)]~(X), l.t = I ..... k,, ?~ = I ..... k x (2.5) 

[¢uz (Z,)J = [(M + Mw(~.))3. 2 + (K + K,,,(~,)))~ + (C + C, flL))] -t [B + B,¢ (X)] 

where M~(h), Kw(h), C+(h), B~,(h) are matrices of transcendental functions of irrational expressions 
in X. 

Thus, we have obtained a dynamical model of a linear DCS: the ky x kx matrix [dp¢×(h)] of generalized 
transfer functions. In the most general case, the generalized transfer functions may be expressed as 
quasi-rational fractions! 
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~ , x  (~') = Q,x (~') / D(~,) (2.6) 

D(~,) = det[(M + Mw(~,))~, 2 + (K + K w (~,))~, + (C + C w (~,))1 = 

= Ao(~,)X n + Al(~,)~, "-I + . . . +  A,(~,) 

Q~x(~, ) = B0(~,)~m + Bt (~,)~,,,-I +. . .  + B,,(k) 

p = l  ..... ky; ~=1  . . . . .  k x, n > m  

where Q~x(h) and D(h) are quasi-polynomials with variable coefficients, and n and rn are positive in- 
tegers. Here  and below, for brevity, we will write B0(h), B~(h) . . . . .  Bin(h), m without the subscripts p~×. 

Let  us assume that x(t) and y(t) are absolutely integrable over the infinite interval (--~, ~). Then, 
using Fourier transforms, we have 

y(t) = ~ ~ [dP~tx(ito)]Yc(ito)ei~do3, Yc(ito)= ~ x( t )e- i~dt  
Z ~ . . . .  

In a physically feasible system, sincex(t) = 0 for all t < 0, the reactiony(t) must be a real vector func- 
tion of the real variable t with definition domain [0, ~]. A sufficient condition for that to be true is that 

Re Q~x (-ito) = Re Q~¢ (i¢o), Im Qla;¢ (-it.o) = - Im Q~tx (ieo) (2.7) 

Re D(-ito) = Re D(ito), Im D(- i~)  = - Im D(ito) 

Taking (2.7) into consideration, assuming that x(t) = ~(t) is a k/-dimensional Dirac function (that is, 
Re ~, (its) = Re ~ (i~) = 1, Im ff (i~) = Im ~ (ito) = 0) and noting that y(- t)  = 0, we obtain a formula 
for the vector of the impulse transfer functions 

q( t ) = 2~[Re  ~P ~x ( ito ) ]E cos totdto, t >~ 0 (2.8) 
re0 

Assume 

r D O . )  , .  lm ~ = c a = const, Jim ~ = c b = const 

where × and 13 are increments in the degrees of the respective quasi-polynomials D(h) and Q~×(h) as 
Ixl 

Since q(0) = 0 in a physically feasible DCS, it follows from a well-known formula of the operational 
calculus for the initial value of the inverse transform that necessarily 

lira q(t) = tim ~ ( X )  = lim ~. ,+[~+l - . -~[ (Q~r(~ . ) /~ . '+~)I (D(L)I  ~.n+X)]E = 0 

Consequently 

n + × > m + [ ~ + l ,  Icbl<~,  c , ,~O (2.9) 

We will call the linear dynamical model of the DCS (2.6) physically feasible if conditions (2.7) and 
(2.9) are satisfied. 

3. T H E  S T A B I L I T Y  OF D Y N A M I C A L  M O D E L S  OF DCS 

To investigate the stability of physically feasible dynamical models of DCS, we introduce the following 
definitions. 

Definition 1. A dynamical system is stable if 

[q(t)[ < ~ for all t t> 0 (3.1) 
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Definition 2. A dynamical system is asymptotically stable if condition (3.1) holds and lim Iq(t) l = 0 
as t---> oo. 

Theorem 1. Let  the variable coefficientsAj(h) ( j  = 0 . . . .  , n) of the quasi-polynomial D(h) be analytic 
functions in the right complex half-plane h = ot + ico and assume that 

Vcx> 0: iim (D(L)I Z, "+~) = c, ~ 0 (3.2) 

V0o e (-oo, o~): D(i¢o) = u(to) + iv (to) ~ O, u(-to) = u(to), u (-co) = -u  (co) 

Suppose that as co increases monotonically from 0 to ~, the vector D(ico) rotates in the complex plane 
(u,/v) from the positive real axis u in the positive direction through an angle (n + ×)~r/2. Then all the 
roots of the quasi-polynomial D(h) lie to the left of the imaginary axis of the complex h plane. 

Proof. As in the case of systems with lumped parameters [5], the proof relies on the argument principle 
[6]. In the complex plane of h = et + its, let 13 be an open domain bounded by a dosed  contour 
S = $1 + $2, where Sz is a semicircle of radius r about the point (0, 0) in the right half-plane and $2 is 
the interval [-/r, ir]. By assumption, the function D(h) is analytic in 13, and as r ---> oo it has no zeros on 
the contour S. By the argument increment principle, as the point h describes one complete circuit around 
S in the counterclockwise sense, the argument of the function D(X) receives an increment 

lira A.~argD(Z)= lim A,.,argD(~.)+ lim A~2argD(L)=2nN (3.3) 
r = l k l ' - ~  r = l ; L l ~ * *  ' r - - - - l k l ~  ' 

where N is the number of zeros o lD(h )  in the right half-plane. Taking the first condition of (3.2) into 
consideration, we have 

lim As, arg D(L) = ( ,  + ×)x (3.4) 
r=l~.l-4*= 

Since Vh e $2 : h = ito, it follows, by the remaining conditions of (3.2), that 

lira A.~. 2 argD(k) = lim (AargD(ito))= -2Aarg D(io~) 
r - -~*o r - - ' ~  r ~ ; = - r  0 ~f.O < oo 

(3.5) 

Substituting expressions (3.4) and (3.5) into (3.3) and putting N = 0, we obtain a condition for the zeros 
of  D(h) in the complex ~ plane to be located to the left of the imaginary axis 

which is was required to prove. 

A arg D(io3) = (n + ×)re / 2 

Theorem 2. Suppose the quasi-polynomials Q~x(h) in the physically feasible quasi-rational fractions 
(2.6) are analytic in the open complex plane and each function dP~x(h)has a denumerable set of  isolated 
poles h = hv = ot~ + ico~ (v = 1, 2 . . . .  ), among which there is one pole h = hi of multiplicity k and all 
the other poles are simple. 

Then: (1) if the dynamical model (2.6) satisfies Theorem 1, it is asymptotically stable; (2) if one root 
of the generalized determinant D(h) is zero, then the dynamical model is stable but not asymptotically 
stable; (3) if two or more roots are zero, the dynamical model is unstable. 

Proof. In the k plane, let H be an open domain bounded by a closed contour -q = "ql + TI2, where the 
straight-line segment "ql -- [eto - ir, ot 0 + / r ]  passes through the point (ao, 0), ao > 0, and is parallel to 
the imaginary axis, while "q2 is a semicircle of  radius r about (eto, 0), to the left of the straight line a = 
~0 ,  (x0 ~ r .  

The vector of impulse transfer functions of the dynamical model may be represented as follows, using 
Mellin's formula [5]: 

] al l  + i .  
q( t )= : - ' 7  I eXt['t'~;c(~.)] EarA, ct0 >0, t~>0 (3.6) 

Z/I;I u o - i ~  

The poles hv (v = 1,2 .... ) of the functions dp~×(h) are isolated; they are also poles of the functions 
eXt~×(h) and as r ---> ~ they belong to H. By the Residue theorem 
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I ( ~tll+ir 
q(t) = :--:.ilim J eX~[dp,,(L)]EarL+ iim SeX'[~.~0,)]Ed~/= 

Z ~ !  t r - - ~  Otii_ir ~ r---)*~rl 2 "- j 

= l e s  (eX~llox(~.)lE) + ~. l e s  (eXtlO,x (k)lE) (3.7) 
~.=kl  j = 2  X=)t.i 

Indeed, for physically feasible dynamic models, by relations (2.9), we have O = n + × - rn - 13 > 1, 
and a real number M > 0 exists, such that, for o~ > t I> 0, 

V~.erl2: le~@~tx0.)l~<M/l~.l°for I~.l-->r--***; 0>1 

Consequently 

~< M ~  

q2 r 

Letting in r ---> oo in (3.7) and using (3.6), we conclude that the last equality in (3.7) is true. 
Since the pole hi is of multiplicity k, while the other poles hz, h2 . . . .  are simple, we have 

1 • a k-~ ~, EQ~x(~.)I E l +  q(t)- - hm -:-g:r(~ ~._~,~)k 
( k - 1 ) ! ~ ,  ax-  t " ~ ) 

+ ~. lim (eXl(~,-~.j)[Q_~'f~')] E]= 
j=2 ).~xs [, D(7~) ) 

=e~.lt~, t#c-~¢ [Qii, (~)]/~-I j E " 
e t~j , (3.8) 

t ) - - 

n>m, W()~)= ~ (~'-~'l)iD(~+i)(~l) 
i=o (k + i)! 

Since xlt(hl) ¢ 0, D'(hj) ¢ 0 and Q~×(X) are analytic functions in the open complex plane, it follows 
that a real number C > 0 exists such that 

< C ,  1 
m ~ ' )~j D (~,j)[ j = 2,3 .... (3.9) 

Note that, since the functions Q~×(K) are analytic, the poles h = ka, ~-2, " ' "  of the functions 
• ¢×(h) = QCx(h) /O(X) are zeros of D(X). 

Let the quasi-polynomial D(h) satisfy Theorem 1, that is, Rehv = etv < 0, max {otv} = - a ,  et > 0 
(v = 1,2,...). Then it follows from (3.8) and (3.9) that 

Iq(t)l<[C]e / ~ , ( k _ { ) ! ( { _ l ) !  +Z  t>~0 

[ C l ; [ C  ..... Cl r, I;-- '~. I%~1 "-n 
) = 2  

We designate a subscript/" such that [N+ll > INI. Then, by the integral criterion, the series ~ is 
convergent. In addition 

lira e -~  = 0, lira tk-~e -~ = 0 as t --> ~ 

Consequently, Vt ~> 0: Iq(t)[ <~,  lim Iq(t)[ = 0 as t ~ ~, and by Definition 2 the dynamical model 
is asymptotically stable. 

Suppose k = 1 and hi = 0, in which case D(h) = XDI(h), DI(0) ¢ 0. Taking relations (3.8) and (3.9) 
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into consideration, we have 

I q(t) I ~< [I Q~x(0) I / I D~(0)IlE+[Cle-a'Z, t >t 0 

Hence it follows that [q(t)  l < ~ ,  and by (3.8), 

lim I q(t) I = [I Q~x (0) I / I DI (0) 11 ;~ 0 as t ~ 

that is, the dynamical model is stable but not asymptotically stable. 
Suppose k = 2 and hi = 0. By (3.8), we find that 

q(t) L w(o) J 
E + e ~jt E 

j=2 
k=0 

It is obvious that [q(t)[ ---> oo as t ---> oo, and the dynamical model is unstable if two roots vanish. It 
can be shown similarly that if k ~> 3 and hi = 0, the dynamical model is unstable. 

Remark. Suppose that among the poles k = kv (v = 1,2...) of the functions O~,x(h), which are zeros of the quasi- 
polynomial D(h), there is at least one pole 3, = .~p in the right half of the complex h plane, that is, Re hp = ctp > 
0. Then the dynamical model (2.6) is unstable, smce, in view of the fact that 

I exp(~.t,t) I = exp(txvt) ---> .o as t ~ ** 

it follows from (3.8), taking into account inequality (3.9), that [q(t)[ --4 ~ as t -~ oo. 

4. Q U A S I - S T A T I C A L  M O D E L  OF A L I N E A R  DCS 

We will construct a quasi-statical model of a linear DCS by the method of successive approximations. 
At the first stage, we exclude all terms in the partial differential equations (PDEs) of system (1.7) that 
contain derivatives with respect to the time t, integrate with respect to the spatial coordinates z and, 
for the given boundary conditions, find a statical solution of the PDEs to serve as the zeroth 
approximation. At the second stage, we substitute the solution of the zeroth approximation into the 
terms of the PDEs that contain partial derivatives with respect to time, also including the terms V2Y 
and Vay on the right of the PDE in (1.7) and, again integrating with respect to z with zero boundary 
conditions, find a quasi-statical solution of the PDEs, which depends on time through the boundary 
conditions and the right-hand sides of the PDEs. Substituting this quasi-statical solution into the linkage 
conditions and then into the ordinary differential equations (ODEs) of system (1.7), we obtain a quasi- 
statical model of the linear DCS as an ordinary dynamical system, involving only ODEs and initial 
conditions. Putting the initial data equal to zero and changing to Laplace transforms, we find that 

D 

)0~)  = [~x (X) ] . i (X) ,  It = i . . . . .  k:.; X = I . . . . .  kx 

[ ~  (X)l = [(M + ~, , )~2 + (K + g ~ ) x  + ( c  + ~ . ) 1 - ' ( 8  + Bw) 

~tz(~ . )  = -Q~z(~.)I DOQ, Q;tz(x) = Bo ~'m + BJ L'-i + ""+ B., 

D'(k) = Aok" + Aj~. "-I +. . .+A n, n> m 

(4.1) 

where Mw, Kw, Cw, Bw are the matrices of the added constant coefficients of inertia, damping, elastic 
stiffnessand perturbation, respectively, due to the impact of the elastic bodies or the absolutely rigid 
bodies; Q~,×(h) and D(h) are ordinary polynomials with constant coefficients. 

Note that the quasi-statical model (4.1) follows from the dynamical model (2.5), (2.6) if one expands 
Mw(k), Kw(X), Cw(k) and B~(X) in powers of X, substitutes into (2.5) and (2.6) and retains terms containing 
h up to and including the second power. If we set 

M--,,.,=iimM,¢(~), K'.=limKw()O. Cw =limC.,(~), B., =limBw(~.)as L--->0 
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f L l 

s z 

Fig. 1. 

in (4.1), the result is a limiting quasi-statical model of the DCS. Like quasi-statical models, mathematical 
models of deformable control objects whose construction is based on an approximate solution of PDEs 
by the finite-element method, or by expansion in the first characteristic forms, are finite-dimensional. 
A control device designed on the basis of such approximate models may cause destabilization of the 
neglected modes of vibration. This effect is referred to in [7], and has been observed experimentally 
in large space structures; it is called control spillover [8]. 

5. AN EXAMPLE OF THE DYNAMICAL MODELLING OF THE ELASTIC 
LIMB OF A MANIPULATOR 

As applied to manipulators, we will investigate the problem of controlling the plane angular motion of a 
discrete-continuous mechanical model (Fig. 1) with an elastic homogeneous straight rod of length I in which 
internal friction is taken into account using the Voigt model. The beginning of the rod is rigidly attached 
at the point O1 of an absolutely rigid beam 1 with moment of inertia ~ An absolutely rigid body 2 of mass 
rn~ and moment of inertia J~ is attached at its centre of mass 02 to the other end of the rod. A control torque 

is applied to the beam 1, where ~ is the control (input function), a] is the angle of rotation of the 
beam, II is the operator of a correcting device,p* is the amplification factor and k~ is the damping factor. 
Taking into account the fact that the deformation of the rod is small, we can write the following expression 
for the polar angle of the output point 02 of the flexible rod 

ot*=a~-y~ ll, ly*(l,t)l=ly~(t)l~.l 

Letting LI, L2, N2 denote the reactions of the rod at its ends, we write the dimensional equations of 
motion of this DCS as 

Joa) + koa I + p*Fla~ = p a o + Ll*, a* * . . . . . . . . .  = a , - y ; / t ,  G 
m~'.f~ - m~la; = N; 

, * * , , , ,  

py, + EJ(I +hO/Ot ) y : :  =pz a) 

y*(O,t*)=O, yz(O,t )=0, y*(l,t*)=yl(t ), yz(l,t ) = -  2(t ) 

L~ = -EJ(I + h~ / ~t*)y*=(O,t *), I~ = EJ(l + h~ l Ot*)y*=(l,t*) 

N~ = E J(1 + hO / Ot*)y*=zz(l,t*) 

t '=O: (x;(O)=O, &;(O)=O, (x~(O)=O, &[(O)=O 
. *  * * * * 

y~(0)=0, Yl(0)=0, y ( z , 0 )=0 ,  y , ( z , 0 ) = 0  

where p is the density per unit length of the rod, E and J are the Young's modulus and the equatorial 
moment of inertia of the cross-section, h is the Voigt coefficient of internal friction, y*(z*, t*) is the 
deflection of the rod, s0(t*) is the input function and a*(t*) is the output function. 

Introducing the dimensionless variables and parameters 
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, l ;l y t = - ~ ,  T =  , = - -  ~ ,  y ~ , ) , ~ = ~  z =  T ,  ~ l , , t = - ~  

= l  . l . ~ " m~ _ t k* 
¢tr ~Otr, r=0 ,1 ,2 ;  p=- -E- jp ,  J0 = , j2 = J2 m 2 = ~  ko ~t - - y '  pt ' - ~ - ~  0 

* * EJ5 = = L E.JD N2 N = l----y- 

we write the equations of motion of the system in dimensionless form and, changing to Laplace 
transforms, we obtain equat ions  for the linear DCS in terms of  t ransforms 

(Jo3- 2 + ko3- + plI(3-))tx~ (3-) - L t (3-) = pao(3-), 1"1(3.) = A(3-)I B(L) 
(5.1) 

J23- 2 (Otl (3-) + 0~2 (3-)) -/-'2 (3-) = 0 

m2XZ (yl (3-) -- 0t I (3-)) -- N2(3-) = O, ot()i,) = ~1 (3-) - Yl ()t.) 

Yz..zz(Z, 3-) - nay(z, 3-) = -n4zo[i (~,), n 4 = _3-2/(1 + ~ , )  (5.2) 

y(O,3-)=yz(O,k)=O,  y(l ,3-)= y~(3-), yz(l ,3-)=-~t2(3-) (5.3) 

/.a(~,) = - ( I  +q(3-)yz:(0,3-), L2(3-) = (I +~3-)yz~(l,3-) 

N2(3-) = (t + %)y::~0, ~.) (5.4) 

where  II(k)  is a p roper  rational fraction. 
The general  solution of  inhomogeneous  ordinary differential equat ion  (5.2) may be writ ten as 

y(z, 3-) = C~S(nz) + C2 T(nz) + C3U(nz) + C4 V (nz) + zotl (3-) 

S ( x ) = ( c h x + c o s x ) 1 2 ,  T ( x ) = ( s h x + s i n x ) 1 2 ,  U ( x ) = ( e h x - e o s x ) 1 2 ,  

V(x)  = (sh x - sin x) / 2 

where  Cx, C2, C3, C~, are integration constants  de te rmined  f rom boundary  conditions (5.3). 
Substituting the expression y(z, h)  into (5.4) and then into Eq. (5.4), we obtain 

or(3-) = (Q(3- )/D(3- ) )oq~(3- ), oq (3-) = (Q ~ (3- )/D(3- ) )%(3- ) (5.5) 

where  

I (PH % 2 + % 3  B(3-)r~ 

Q(3-)=1~21 rP22 +(P2.~ 0 
I 
~q~31 ~032 +~033 0 

D(3-)=det[q)o], i , j =  1,2,3 

I (Pll ~P~2 B(3-)p 

Q1(3-) = }q)21 cP22 0 

111)31 q)32 0 

(Ptt = B(3-)l-tll(I +~3-),  ~t2  = B(3-)ftt2(I +'t'3-) 

qh~ = B(%)( Jo 3-2 + ko3- + ~h33- 2 ) + A(3-)p 

q)21 = J 2  3-2 +~21(1+3'3-), q)22 =g22(l+Y3-) ,  

¢,p 31 = 1.1.31 (1 + ~/3-), ~32 = m23-2 + I.t32 (1 + ~3-), 

q~23 = J2 3-2 - tx23 3-2 

q)33 : -m2 3-2 - I-t33 3-2 

~11 = f l l  n, [t12 = f12 r/2, ~t13 = f13 n-3 ,  ILl-21 = f21 n, ~22 ----- f22 n2,  

~t31 = ~ n2, 1~32 = f32 n~, Ix33 = f.~3 n-2 

f,j 

f22 

f~, 

~23 ----- f23 r1-3 

= V / A ,  f j 2 = U I A ,  f t 3 = [ U ( n - T ) - V ( I - S ) ] / A ,  f 2 t = ( U T - V S ) / A  

= ( T  2 - U S ) / A ,  f23 = V - [ V S ( I - S ) - U S ( n - T ) + T 2 ( n - T ) - U T ( I - S ) ] / A  

= ( U S - V 2 )  IA ,  f 3 2 = ( T S - U V ) I A  
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p+i(l+ ¢O=a~°)(l+ 7)O+a~2)~2 +O(l~,13), i=,1,2,3; j= l ,2 
~+/~.2=a~°)~?+O(IZ.13), i=1,2,3; .i=3 

Formulae (5.5) define a DCS with a dynamical model of the rod, where the whole infinite spectrum 
of eigenfrequencies and vibration modes of the rod is taken into account through the variable coefficients 
Ixij (i, j = 1, 2, 3). Note that 

kt~i -- a~°) + TL2a~ ) + for 17q'~l 

al°)=2, a~2)=-I/140, a~°)=6, a[2)=-13/420, a ~ ) = l / 3 0  (5.6) 

a21(0)=4, ~'21~(2) = 1 ] 105, '-'22~(°) = 6, t~22~(2) = 1 i /210, u23~(0) = 1/20 

a(° )=6,  ~ (2)= ]1 /210 ' (0)=12, ~(2)=13/35, ~ (0 )=7 /20  31 u31 a32 w32 u33 

~tq --* bij~. ~ij as IXl -> ' ,<,  

kll =k12 =0; k]3 =-k32 =-0.75; k21 = -k33  = 0.25; k22 = -k23  = k3~ = 0 .5  
(5.7) 

Substituting formulae (5.6) into relations (5.5) and noting that 

p,q(l+'y~,) a~?) ( l+~ , )_  (2}.t2 = +aij A. +O(1~.13), i=1,2,3; j = l , 2  

~ti~'2 =a(°)~'2+O(17q3)'~i i=1,2,3; j = 3  

we obtain a model of the elastic link of the manipulator with a quasi-statical model of the rod. 
Assuming that P-ij = a!o) (i, j = 1, 2, 3), we have a model of the elastic link of the manipulator with 

a limiting quasi-statical model of the rod. 
Model (5.5) is convenient for parametric design. Let a0(t) = 8(0 be a Dirac function. Then, by formula 

(2.8), the impulse transfer function with respect to the output c~(t) is 

q(t) = 2 ~ ReO(ioJ)coso)tdo), ~(i£o) = 
Q( i~_..__~) 

o D(itO) 

If eto(t ) = l(t) is the Heaviside unit step function, then the transfer function of the system with respect 
to the output a(t) may be expressed as 

t 2 "0 sin tot 
ct(t)=fq(t)dt=-~[_o Re~(ito) do, t~>0 (5.8) 

0 

The transfer function with respect to the angle of rotation oq(t) of beam 1 may be evaluated in a 
similar way. 

Let us select the desired frequency response of the system 

Re • (ito) = (I - x2to 2 )/((I - z2to 2 )2 + 2,~2t02) 

to which corresponds, according to (5.8), the desired transfer function ot°(t), which is exponential in 
nature and the duration of the transient does not exceed 3r. 

Let Re~(ito) depend on the design parameters/'1, T2..., Ts with constraints Tj ~ lay, by]. Consider 
the integral 

7 [Re ~(ito, Ti, T 2 ..... ~.) - Re O° (i0)] 2 do) (5.9) 
0 

Carrying out multi-dimensional minimization, we choose T~, ~ .... T~ for which integral (5.9) reaches 
a minimum. We can now compute the transfer function of the system being designed 

2.0 
T~ ) -alto c~,.(t) = ~- ReO(ito, Tl°,T ° ..... .° sintotto 
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Fig. 2. 

and analyse it. The degree of the approximation of etc(t ) to a°(t) depends on the structure of the control 
device and the correcting links. 

Consider the model of a DCS without a load at the end of the rod, m2 = J2 = 0, with parameters 
J0 = 7.1 x 10-3; k0 = 1.5 x 10-2; ~/ = 4.8 x 10-3; p = 31.5 and correcting device 

(rt~, + 1)(T2~. + 1)(r3~, + 1) (5.10) 
no(X)  = (T4~, + I)(T~, + 1)(T~, + I) 

First, on the assumption of the l imit ing quasi-statical model of the rod (P-ij = al °), i , j  = 1, 2, 3), the 
parameters of the correcting device were chosen by minimizing integral (5.9) 

TI = 0.36; T 2 = 0.2544; T 3 = 0.246; T4 = 3.8 × 10-2; T5 = 10-z; T6 = 4.76 × 10 - 6  (5.11) 

and the transfer function ~(°)(t) was computed. 
The limiting quasi-statical model of the rod in this system was then replaced by a dynamical model 

and the transfer function a(t) was computed. A similar computation yielded the transfer function ~(2)(t) 
of this system with the quasi-statical rod model (5.6). The result is shown in Fig. 2(a). It can be seen 
that the correcting device II0(k ) constructed on the basis of the limiting quasi-statical model of the rod 
destabilizes the system, with both dynamical and quasi-statical models of the rod, at a neglected vibration 
mode. Note that the 2 graphs of a(t) and ~(2)(t) are practically the same. Figure 2(b) shows graphs of 
a(t) and ~(°)(t), ~()( t)  fo rp  = 0.315, from which it can be seen that reducing the amplification factor 

0.5 

t l  

.f 
0 2 ~ ~t 

Fig. 3. 
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p lessens the difference between the results of limiting quasi-statical modelling ~(°)(t), quasi-statical 
modelling ~(2)(t) and dynamical modelling et(t). 

Next, a correcting device was constructed for the DCS with a dynamical model of the rod, where 
m2 =-/2 = 0, p = 31.5 

n . - ,  ( r ]  x2 + 2g, rTX + l)(rs2x 2 + 2{ TsX + I) 
FI(L) =,,otto) (T92)~ 2 + 2~,3T9£ + l)(Tl~, 2 + 2~4TIo~' + 1) (5.12) 

where 

T7 = 7.246 × 10-2; t~ 1 = 10-3; T 8 = 2.934 x 10-2; 62 = 7 x 10 -2 

T 9 = 0.284; ~1 = 10-3; T10 = 4.575 x 10-2; ~4 = 4 × 10 -2 

and the function II0(X ) is given by (5.10) and (5.11). 
Figure 3 shows graphs of the transfer functions a(t) and al( t  ), as well as the frequency hodograph 

D(io~) of the system in the special scale 

u + iv = D(ia))(Arsh ] D(im)])/I D(ial) ] 

The system satisfies Theorem 1, and here n + × = 12 and × = 1. 
In the case of a system withp = 31.5 and a load m 2 = 0.34 and J2 = 0.1 at the end of the rod, with 

the design based on a limiting quasi-statical model of the rod, the correcting device has the form (5.12), 
where the function I]0(h ) is given by (5.10) with 

T 1 = 1.36; T2 = 0.96; T3 = 4 x 10-3; T 3 = 3.81 x 10-2; T 5 = 10-2; 7"6 = 10 -4 

7"7=0.2206; {1 =10-2;  T s = 5 . 5 4 × 1 0 - 2 ;  ~ = 5 × 1 0  .2 

T9 = 0.446; ~1 = 4 X 10-3; T10 = 0.1193; ~ = 10 -2 

Graphs of the transfer functions of a system with this correcting device, where the models of the rod 
are dynamical cx(t), quasi-statical ~(2)(t) and limiting quasi-statical ~(°)(t), are shown in Fig. 4. A 
comparison of the graphs in Figs 4 and 2(a) shows that the introduction of a load at the end of the rod 
reduces the difference between the graphs cx(t) = ~(2)(t) and ~(°)(t) to within an error that is acceptable 
in practice. 

Considering the above systems with a dynamical model of the rod and letting the internal friction in 
the rod decrease, y ~ 0, values of y were found for which it was not possible to formulate a finite- 
dimensional correcting device in the form of a rational fraction so that the frequency hodograph D(io) 
satisfies Theorem 1, i.e, so that the control system is stable; this is in agreement with previously known 
results [9]. However, in a system with a limiting quasi-statical model of the rod, even if y = 0 one can 
construct a finite-dimensional correcting device which guarantees stability of the control system and 
the prescribed quality of the transfer function ~(°)(t). 

0.5 

 c*(O 

Fig. 4. 

d /0 t 
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